Seismic Study of An Isolated Cable-Stayed Bridge under Near-Fault Ground Motions

Author:

Gao Haoyuan1ORCID,Li Liuyang23,Ding Zhigang4,Zhang Lianzhen5ORCID,Zhang Kun6ORCID,Luo Zhihao23

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai 200092, China

2. China Construction Eighth Engineering Division Co., Ltd., Shanghai 200135, China

3. China Construction Eighth Bureau General Contracting Construction Co., Ltd., Shanghai 201204, China

4. MCC5 Group Shanghai Corp., Ltd., Shanghai 201999, China

5. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

6. Faculty of Engineering, University of Auckland, Auckland 1023, New Zealand

Abstract

During strong earthquakes, pounding may occur on large-span bridges and their approach bridges. The effect and mitigation measures of such pounding have rarely been explored in previous studies. This paper primarily uses finite element models to investigate the pounding effects at the expansion joints between the main cable-stayed bridge and its approach bridge. Friction pendulum bearings (FPBs) and fluid viscous dampers (FVDs) are used to alleviate poundings. Furthermore, a detailed analysis is conducted on how the pounding effect of the isolated main bridge with FPBs and FVDs is affected by the wave passage effect, ground motion type, and soil type. This study reveals that FPBs and FVDs can effectively reduce pounding effects and the associated risks. Even with the installation of FPBs and FVDs, lower seismic wave velocities and near-fault seismic motions with pulse effects can significantly increase the pounding effects between the cable-stayed bridge and its approach bridge.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3