Site-Specific Deterministic Temperature and Dew Point Forecasts with Explainable and Reliable Machine Learning

Author:

Han Mengmeng1ORCID,Leeuwenburg Tennessee2ORCID,Murphy Brad2

Affiliation:

1. Bureau of Meteorology, 32 Turbot St, Brisbane City, QLD 4000, Australia

2. Bureau of Meteorology, 700 Collins St, Docklands, VIC 3008, Australia

Abstract

Site-specific weather forecasts are essential for accurate prediction of power demand and are consequently of great interest to energy operators. However, weather forecasts from current numerical weather prediction (NWP) models lack the fine-scale detail to capture all important characteristics of localised real-world sites. Instead, they provide weather information representing a rectangular gridbox (usually kilometres in size). Even after post-processing and bias correction, area-averaged information is usually not optimal for specific sites. Prior work on site-optimised forecasts has focused on linear methods, weighted consensus averaging, and time-series methods, among others. Recent developments in machine learning (ML) have prompted increasing interest in applying ML as a novel approach towards this problem. In this study, we investigate the feasibility of optimising forecasts at sites by adopting the popular machine learning model “gradient boosted decision tree”, supported by the XGBoost package (v.1.7.3) in the Python language. Regression trees have been trained with historical NWP and site observations as training data, aimed at predicting temperature and dew point at multiple site locations across Australia. We developed a working ML framework, named “Multi-SiteBoost”, and initial test results show a significant improvement compared with gridded values from bias-corrected NWP models. The improvement from XGBoost (0.1–0.6 °C, 4–27% improvement in temperature) is found to be comparable with non-ML methods reported in the literature. With the insights provided by SHapley Additive exPlanations (SHAP), this study also tests various approaches to understand the ML predictions and increase the reliability of the forecasts generated by ML.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3