Friction and Wear Performance of a Hydraulic Motor Roller/Piston Pair Contact Lined with the Self-Lubricating Bearing Bush Modified by PEEK

Author:

Li Ying12,Han Xuanxuan1,Cui Xueshi1,Wang Ziyang1,Zhang Jin12ORCID

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China

Abstract

Poly Ether Ether Ketone (PEEK) is a kind of special engineering plastic with excellent properties such as high-temperature resistance, self-lubrication, wear resistance, and high mechanical strength. However, its blending or composite modification applications still face numerous challenges. The primary objective of this research was to evaluate the friction and wear performance of a three-layer self-lubricating bearing bush, which was made from a modified material containing short carbon fiber and Poly Ether Ether Ketone (SCF/PEEK). The bearing bush is used as a surface contact layer on the pistons of a hydraulic motor in the interface with the cam roller. The bearing bush was processed using a 15% SCF-modified PEEK material, and the friction and wear test was conducted using a self-built friction test machine. This study aimed to assess the frictional and wear characteristics of the SCF/PEEK-modified material in the bearing bush. The results show that as the experimental pressure rises from 15 MPa to 25 MPa, the friction coefficient of the SCF-modified bearing bush experiences a significant decrease from 0.420 to 0.296. Furthermore, the stability of the frictional morphology of carbon fibers indicates its effective adaptability to low speed and high load conditions.

Funder

National Key Research and Development Program

Science Research Project of Hebei Education Department

General Program of National Natural Science Foundation of China

Ningbo Key R & D Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3