Study of the Vibration Isolation Properties of a Pneumatic Suspension System for the Seat of a Working Machine with Adjustable Stiffness

Author:

Wos Piotr1ORCID,Dziopa Zbigniew1ORCID

Affiliation:

1. Department of Mechatronics and Armament, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland

Abstract

This paper presents a study of the vibration isolation properties of pneumatic suspension systems for work machinery seats, with a particular focus on adjustable stiffness. It highlights the contribution that semi-active seat suspension systems make to vibration reduction, ultimately leading to improved passenger comfort levels and increased safety for vehicle users. The primary objectives of the research were twofold: firstly, to identify the key parameters of the apneumatic vibration isolation system; and secondly, to evaluate its performance in improving vibration damping. This entailed the development of a mathematical model that would foreground the movement through simulations based on different initial pressures, thus enabling the accurate prediction of real-life scenarios concerning the vibration-damping characteristics of the seating system, taking into account the different design options available for working machine technology applied at the test bed level, of which the pneumatic isolator is an integral component. In the cognitive process, the verification and validation of the formulated theoretical model play an important role. This approach enables the behaviour of the actual system to be inferred from the results of simulation studies, thus allowing the design of an appropriate vibration control system. By simulating different air bellow pressures, the characteristics of the seat suspension system can be assessed. This study provides valuable insights into optimising the vibration-damping capability of the air suspension system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3