Analysis, Design, and Experimental Validation of a High-Isolation, Low-Cross-Polarization Antenna Array Demonstrator for Software-Defined-Radar Applications

Author:

Ricciardella Nicholas1,Fuscaldo Walter2ORCID,Mattei Tito1,Fiorello Anna Maria1,Infante Leopoldo1,Galli Alessandro3ORCID

Affiliation:

1. Electronics Division Leonardo SpA, 00131 Rome, Italy

2. Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi, 00133 Rome, Italy

3. Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy

Abstract

In a software-defined radar (SDR) system, most of the signal processing usually implemented in hardware is implemented by software, thus allowing for higher flexibility and modularity compared to conventional radar systems. However, the majority of SDR demonstrators and proofs of concept reported in the open literature so far have been based on simple antenna systems. As a result, the full potentialities of an SDR approach have not been completely exploited yet. In this work, we propose a flexible antenna module to be integrated into an active electronically scanning array (AESA) with controlled sidelobe level over a wide angular range, exhibiting polarization reconfigurability with a low cross-polarization level and high isolation. For this purpose, analytical and numerically efficient techniques for the synthesis of the aperture distribution and the correct evaluation of the radiating features (e.g., beamwidth, pointing angle, sidelobe levels, etc.) are presented in order to grant real-time control of the digital beamforming network. A sub-array module demonstrator is fabricated and measured to corroborate the concept.

Funder

Leonardo S.p.A.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3