Are Classification Deep Neural Networks Good for Blind Image Watermarking?

Author:

Vukotić Vedran,Chappelier Vivien,Furon TeddyORCID

Abstract

Image watermarking is usually decomposed into three steps: (i) a feature vector is extracted from an image; (ii) it is modified to embed the watermark; (iii) and it is projected back into the image space while avoiding the creation of visual artefacts. This feature extraction is usually based on a classical image representation given by the Discrete Wavelet Transform or the Discrete Cosine Transform for instance. These transformations require very accurate synchronisation between the embedding and the detection and usually rely on various registration mechanisms for that purpose. This paper investigates a new family of transformation based on Deep Neural Networks trained with supervision for a classification task. Motivations come from the Computer Vision literature, which has demonstrated the robustness of these features against light geometric distortions. Also, adversarial sample literature provides means to implement the inverse transform needed in the third step above mentioned. As far as zero-bit watermarking is concerned, this paper shows that this approach is feasible as it yields a good quality of the watermarked images and an intrinsic robustness. We also tests more advanced tools from Computer Vision such as aggregation schemes with weak geometry and retraining with a dataset augmented with classical image processing attacks.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference30 articles.

1. ImageNet classification with deep convolutional neural networks

2. CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples;Radenović,2016

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3