Abstract
This paper addresses the questions of acceptable upper limits for storage development and how best to deploy storage capacity in the long-term planning of built surface water storage in river basins. Storage-yield curves are used to establish sustainable storage development pathways and limits for a basin under a range of environmental flow release scenarios. Optimal storage distribution at a sub-basin level, which complies with an identified storage development pathway, can also be estimated. Two new indices are introduced—Water Supply Sustainability and Environmental Flow Sustainability—to help decide which pathways and management strategies are the most appropriate for a basin. Average pathways and conservative and maximum storage limits are illustrated for two example basins. Conservative and maximum withdrawal limits from storage are in the range of 45–50% and 60–65% of the mean annual runoff. The approach can compare the current level of basin storage with an identified pathway and indicate which parts of a basin are over- or under-exploited. A global storage–yield–reliability relationship may also be developed using statistics of annual basin precipitation to facilitate water resource planning in ungauged basins.
Funder
International Water Management Institute
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献