Effects of the Heat Transfer Fluid Selection on the Efficiency of a Hybrid Concentrated Photovoltaic and Thermal Collector

Author:

Campos Catarina Sofia,Torres João Paulo N.ORCID,Fernandes João F. P.

Abstract

This work focuses on the performance study of the PowerCollector™, a concentrated photovoltaic thermal system with a custom-made geometry and a photovoltaic cell cooling technology. To do so, a model that portrays the behavior of this concentrating solar system was developed. In order to validate all the information obtained with its simulation, measurements were taken from an experimental setup and were compared to the respective results predicted by this exact same model. It should be noted that all these procedures were based on the fluid for which the PowerCollector™ has been designed (water). Hence, the efficiency enhancement using nanofluids was also considered, as data from some studies addressing this issue were analyzed. Alongside all of this, the corrosion and erosion effects on the pipes incorporated in this system and originated by all the fluids mentioned throughout this investigation were also evaluated. In summary, with this entire study, it could be concluded that nanofluids may represent an appropriate alternative to water, as long as they are chosen according to all particularities of each case.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Applications of carbon materials in photovoltaic solar cells

2. Historical and recent development of concentrating photovoltaic cooling technologies;Sanjeev;Renew. Sustain. Energy Rev.,2016

3. Active solar water heating systems;Gong,2016

4. Surface passivation of crystalline silicon solar cells: a review

5. This is the Most Efficient Solar Panel Ever Made;Ward,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3