On the Energy Performance of Micro-Encapsulated Phase Change Material Enhanced Spackling with Night Ventilation

Author:

Aamodt AndreasORCID,Chaudhuri ArnabORCID,Madessa Habtamu BayeraORCID,Vik Tor Arvid

Abstract

Phase change material (PCM) is an attractive solution for improvement of thermal performance in buildings, and have excited a vast amount of research in recent years. There are however practical challenges with ensuring adequate phase transitions of the PCM to exploit the passive heat storage benefits. Night ventilation (NV) with free cooling have surfaced as one of the most promising methods to properly utilize PCMs and maximize energy savings. This work deals with a novel spackling compound enhanced with microencapsulated PCM. The product is intended for use at inner walls and ceiling surfaces of buildings and is suited for new and retrofitting building applications. Ensuing former experimental studies, a validated simulation model is developed and used to study the PCM with natural and hybrid NV strategies in an office building during summer conditions in Oslo, Norway. Cooling load reduction and energy savings are analyzed with varying air flow rates of 0.5–5 air changes per hour (ACH) and 2–4 mm PCM layer thickness. It is shown how increasing air flow rates and PCM thickness greatly enhances energy performance, but at a diminishing rate. Although the NV alone can reduce the cooling load by 11.5% at 1 ACH, 40.2% at 3 ACH and 59.8% at 5 ACH, one can achieve further reduction up to 19.5%, 78.2% and 95.5% for the respective ACHs with 4 mm PCM. The natural NV provides more energy savings compared to the hybrid strategy. As energy requirement by fans increases with the increase of air flow rates in the hybrid strategy, the energy savings eventually start to reduce. The hybrid strategy can save 38% energy at most with 3 ACH, and the savings is increased to 50% with the inclusion of 4 mm PCM. On the other hand, the natural strategy saves 56% of energy at the same air flow rate, and 69% with 4 mm of PCM.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. United Nations/Framework Convention on Climate Change,2015

2. Global Status Report for Buildings and Construction 2019https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019

3. A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economyhttps://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773

4. Smart Buildings: Advanced Materials and Nanotechnology to Improve Energy-Efficiency and Environmental Performance;Casini,2016

5. Phase change materials for building applications: A state-of-the-art review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3