Underwater Acoustic Target Recognition with a Residual Network and the Optimized Feature Extraction Method

Author:

Hong FengORCID,Liu Chengwei,Guo Lijuan,Chen Feng,Feng Haihong

Abstract

Underwater Acoustic Target Recognition (UATR) remains one of the most challenging tasks in underwater signal processing due to the lack of labeled data acquisition, the impact of the time-space varying intrinsic characteristics, and the interference from other noise sources. Although some deep learning methods have been proven to achieve state-of-the-art accuracy, the accuracy of the recognition task can be improved by designing a Residual Network and optimizing feature extraction. To give a more comprehensive representation of the underwater acoustic signal, we first propose the three-dimensional fusion features along with the data augment strategy of SpecAugment. Afterward, an 18-layer Residual Network (ResNet18), which contains the center loss function with the embedding layer, is designed to train the aggregated features with an adaptable learning rate. The recognition experiments are conducted on the ship-radiated noise dataset from a real environment, and the accuracy results of 94.3% indicate that the proposed method is appropriate for underwater acoustic recognition problems and sufficiently surpasses other classification methods.

Funder

the National Natural Science Foundation of China for Young Scholar

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3