Selective Removal of Diesel Oil Hydrocarbons in Aerobic Bioremediation

Author:

Raffa Carla Maria,Chiampo FulviaORCID,Vergnano AndreaORCID,Godio AlbertoORCID

Abstract

In soil bioremediation, the main target is the removal of pollutants to the maximum extent. Careful monitoring of pollution concentration provides information about the process efficacy and removal efficiency. Moreover, a detailed analysis of residual pollution composition provides a detailed picture of single compound removal or presence, especially of interest when pollution is constituted by a mixture of chemical species. This paper shows the first results of a study on the speciation of diesel oil compound removal from soils by aerobic remediation. The experimental study was carried out in a microcosm using indigenous microorganisms and adopting the biostimulation strategy with a mineral salt medium for bacteria. The microcosm contained 200 g of dry soil and 14 g of diesel oil with a carbon to nitrogen ratio (C/N) equal to 180 and water content (u%) equal to 12% by mass. The residual pollution concentration in soil was monitored for 138 days to evaluate both the overall removal efficiency and that for the main groups of hydrocarbons. The results showed that the pollution composition changed during the test because of the different rate of metabolization for the single compounds: the overall removal efficiency was about 65%, and that of different hydrocarbon clusters was between 53% and 88%. The monitoring data also allowed the kinetic study of the degradation process, which was better modeled by a second-order kinetic model than by a first-order one. These findings were confirmed by analyzing other microcosms with different operative conditions (C/N = 120, 180 and u% = 8%, 12%, 15% by mass). The proposed methodology may be useful for the evaluation of compliance to concentration limits imposed by law.

Funder

Ministero degli Affari Esteri e della Cooperazione Internazionale

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3