Abstract
There are various challenging issues in automating line art colorization. In this paper, we propose a GAN approach incorporating semantic segmentation image data. Our GAN-based method, named Seg2pix, can automatically generate high quality colorized images, aiming at computerizing one of the most tedious and repetitive jobs performed by coloring workers in the webtoon industry. The network structure of Seg2pix is mostly a modification of the architecture of Pix2pix, which is a convolution-based generative adversarial network for image-to-image translation. Through this method, we can generate high quality colorized images of a particular character with only a few training data. Seg2pix is designed to reproduce a segmented image, which becomes the suggestion data for line art colorization. The segmented image is automatically generated through a generative network with a line art image and a segmentation ground truth. In the next step, this generative network creates a colorized image from the line art and segmented image, which is generated from the former step of the generative network. To summarize, only one line art image is required for testing the generative model, and an original colorized image and segmented image are additionally required as the ground truth for training the model. These generations of the segmented image and colorized image proceed by an end-to-end method sharing the same loss functions. By using this method, we produce better qualitative results for automatic colorization of a particular character’s line art. This improvement can also be measured by quantitative results with Learned Perceptual Image Patch Similarity (LPIPS) comparison. We believe this may help artists exercise their creative expertise mainly in the area where computerization is not yet capable.
Funder
The Cross-Ministry Giga KOREA Project’ grant funded by the Korea governmen
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference42 articles.
1. Generative Adversarial Nets;Goodfellow,2014
2. Comicolorization
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献