Multi-Feature Fusion and Adaptive Kernel Combination for SAR Image Classification

Author:

Wu Xiaoying,Wen Xianbin,Xu Haixia,Yuan Liming,Guo Changlun

Abstract

Synthetic aperture radar (SAR) image classification is an important task in remote sensing applications. However, it is challenging due to the speckle embedding in SAR imaging, which significantly degrades the classification performance. To address this issue, a new SAR image classification framework based on multi-feature fusion and adaptive kernel combination is proposed in this paper. Expressing pixel similarity by non-negative logarithmic likelihood difference, the generalized neighborhoods are newly defined. The adaptive kernel combination is designed on them to dynamically explore multi-feature information that is robust to speckle noise. Then, local consistency optimization is further applied to enhance label spatial smoothness during classification. By simultaneously utilizing adaptive kernel combination and local consistency optimization for the first time, the texture feature information, context information within features, generalized spatial information between features, and complementary information among features is fully integrated to ensure accurate and smooth classification. Compared with several state-of-the-art methods on synthetic and real SAR images, the proposed method demonstrates better performance in visual effects and classification quality, as the image edges and details are better preserved according to the experimental results.

Funder

National Natural Science Foundation of China

Major Project of Tianjin

Natural Science Foundation of Tianjin

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3