Author:
Wu Xiaoying,Wen Xianbin,Xu Haixia,Yuan Liming,Guo Changlun
Abstract
Synthetic aperture radar (SAR) image classification is an important task in remote sensing applications. However, it is challenging due to the speckle embedding in SAR imaging, which significantly degrades the classification performance. To address this issue, a new SAR image classification framework based on multi-feature fusion and adaptive kernel combination is proposed in this paper. Expressing pixel similarity by non-negative logarithmic likelihood difference, the generalized neighborhoods are newly defined. The adaptive kernel combination is designed on them to dynamically explore multi-feature information that is robust to speckle noise. Then, local consistency optimization is further applied to enhance label spatial smoothness during classification. By simultaneously utilizing adaptive kernel combination and local consistency optimization for the first time, the texture feature information, context information within features, generalized spatial information between features, and complementary information among features is fully integrated to ensure accurate and smooth classification. Compared with several state-of-the-art methods on synthetic and real SAR images, the proposed method demonstrates better performance in visual effects and classification quality, as the image edges and details are better preserved according to the experimental results.
Funder
National Natural Science Foundation of China
Major Project of Tianjin
Natural Science Foundation of Tianjin
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献