Non-Linear Qualitative Dynamic Analysis of Supercritical Water-Heated Channels under External Vertical Accelerations

Author:

Lee Jin DerORCID,Chen Shao Wen

Abstract

Employing the external force method to regard seismic impact and the three-region methodology to analyze the supercritical heated channel, a non-linear dynamic model was developed to investigate the transient characteristics of single channel or parallel channels under the impacts of vertical sinusoidal and seismic accelerations. The present model was validated against the experimental data, which could suitably estimate the additional pressure drop caused by the vertical vibrations. The influences of parameters on the seismic-induced oscillation conducted in a supercritical heated channel indicated that a longer heated length, uprating operation power and a larger outlet loss coefficient all exhibit unstable effects, while the increase of inlet loss coefficient, a larger tube diameter and a lower inlet fluid temperature would tend to stabilize the system. Moreover, the supercritical fluid would present a high natural frequency in the very small NP-SUB region. The parametric effects on the parallel channel system are related to the inherent stability nature of initial state and the interactions among channels. The more uneven heat flux distribution among channels would cause a larger vibration-induced oscillation. In particular, when it is combined with the resonance effect, the system may exhibit much larger oscillations than in the case of non-resonance.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3