Sequential Recommendations on GitHub Repository

Author:

Kim JaeWonORCID,Wi JeongAORCID,Kim YoungBin

Abstract

The software development platform is an increasingly expanding industry. It is growing steadily due to the active research and sharing of artificial intelligence and deep learning. Further, predicting users’ propensity in this huge community and recommending a new repository is beneficial for researchers and users. Despite this, only a few researches have been done on the recommendation system of such platforms. In this study, we propose a method to model extensive user data of an online community with a deep learning-based recommendation system. This study shows that a new repository can be effectively recommended based on the accumulated big data from the user. Moreover, this study is the first study of the sequential recommendation system that provides a new dataset of a software development platform, which is as large as the prevailing datasets. The experiments show that the proposed dataset can be practiced in various recommendation tasks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Session-based recommendations with recurrent neural networks;Hidasi;arXiv,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3