Effects of Vacancy and Hydrogen on the Growth and Morphology of N-Type Phosphorus-Doped Diamond Surfaces

Author:

Nie Siyuan,Shen Wei,Shen Shengnan,Li HuiORCID,Pan Yuanhui,Sun Yuechang,Chen Yinghua,Qi Haiqin

Abstract

Phosphorus is regarded as the best substitutional donor for n-type diamonds. However, because of vacancy-related complexes, H-related complexes, and other defects in P-doped diamonds, obtaining n-type diamonds with satisfying properties is challenging. In this report, PV and PVH complexes are studied in detail using density function theory (DFT). The formation energy reveals the possibility of emergency of these complexes when doping a single P atom. Although vacancies have difficulty forming on the surface alone, the presence of P atoms benefits the formation of PV and PVH complexes and significantly increases crystal vacancies, especially in (111) diamond surfaces. Compared to (111) surfaces, PV and PVH complexes more easily form on (001) surfaces. However, the formation energies of these complexes on (001) surfaces are higher than those of doping P atoms. Studying the structural deformation demonstrated that both constraints of the upper and lower C layers and forces caused by structural deformation prevented doping P atoms. By analyzing the bond population around these dopants, it finds that the bond populations of P–C bonds of PVH complexes are larger than those of PV complexes, indicating that the PV complexes are not as stable as the PVH complexes.

Funder

National Natural Science Foundation of China

China Scholarship Council

International Cooperation Research Project of Shenzhen

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3