Mechanism of Overlying Strata Structure Instability during Mining below Unconsolidated Confined Aquifer and Disaster Prevention

Author:

Wang Xiaozhen,Zhu WeibingORCID,Xu Jialin,Han Hongkai,Fu Xiang

Abstract

There is a layer of the unconsolidated confined aquifer (UCA) made of non-cemented sand and grit on the bed of Quaternary thick topsoil in many coal mines in east and north China. Existing on the bedrock of coal measures, it poses a serious threat to coal mine safety. Worse, it caused many supports crushing and water inrush disasters (SCWIDs) and resulted in significant economic losses. Aiming at the above problems, this paper adopts a simulation experiment, field measurement, engineering detection, and theoretical analysis to conduct the research. The research reveals the overburden’s destructive rules during mining under UCA. The results indicate that UCA plays an important role in the process of load transfer due to its mobility and replenishment in time. When mining close to the aquifer, the load transfer of aquifer leads to overburden breaking entirely and sliding instability of the bond-beam structure, then, the water flowing fractured zone develops rapidly and connects the aquifer, which is the fundamental reason for SCWID under the UCA. Based on the mechanism of SCWID, a prediction method of support crushing and water inrush hazard zones was put forward. Artificial pre-split blasting based on the location of a key stratum was applied to prevent SCWID. The proposed methods have been used in 7131 working face and safe mining was achieved.

Funder

National Natural Science Foundation of China

The Independent research project of State Key Laboratory of Coal Resources and Safe Mining, CUMT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Coal mining under aquifers in China: a case study

2. Regulations of Buildings, Water, Railway and Main Well Lane Leaving Coal Pillar and Press Coal Mining,2017

3. Cause analysis of water bursting in 7114 mining face of 71 coal seam in Qidong colliery;Tan;Coal Min. Technol.,2006

4. Prediction of water-inrush risk areas in process of mining under the unconsolidated and confined aquifer: a case study from the Qidong coal mine in China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3