Towards Phase Change Materials for Thermal Energy Storage: Classification, Improvements and Applications in the Building Sector

Author:

Podara Christina V.,Kartsonakis Ioannis A.ORCID,Charitidis Costas A.ORCID

Abstract

The management of energy consumption in the building sector is of crucial concern for modern societies. Fossil fuels’ reduced availability, along with the environmental implications they cause, emphasize the necessity for the development of new technologies using renewable energy resources. Taking into account the growing resource shortages, as well as the ongoing deterioration of the environment, the building energy performance improvement using phase change materials (PCMs) is considered as a solution that could balance the energy supply together with the corresponding demand. Thermal energy storage systems with PCMs have been investigated for several building applications as they constitute a promising and sustainable method for reduction of fuel and electrical energy consumption, while maintaining a comfortable environment in the building envelope. These compounds can be incorporated into building construction materials and provide passive thermal sufficiency, or they can be used in heating, ventilation, and air conditioning systems, domestic hot water applications, etc. This study presents the principles of latent heat thermal energy storage systems with PCMs. Furthermore, the materials that can be used as PCMs, together with the most effective methods for improving their thermal performance, as well as various passive applications in the building sector, are also highlighted. Finally, special attention is given to the encapsulated PCMs that are composed of the core material, which is the PCM, and the shell material, which can be inorganic or organic, and their utilization inside constructional materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3