Margin CosReid Network for Pedestrian Re-Identification
-
Published:2021-02-17
Issue:4
Volume:11
Page:1775
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Yun Xiao,Ge Min,Sun Yanjing,Dong Kaiwen,Hou Xiaofeng
Abstract
This paper proposes a margin CosReid network for effective pedestrian re-identification. Aiming to overcome the overfitting, gradient explosion, and loss function non-convergence problems caused by traditional CNNs, the proposed GBNeck model can realize a faster, stronger generalization, and more discriminative feature extraction task. Furthermore, to enhance the classification ability of the softmax loss function within classes, the margin cosine softmax loss (MCSL) is proposed through a boundary margin introduction to ensure intraclass compactness and interclass separability of the learning depth features and thus to build a stronger metric-based learning model for pedestrian re-identification. The effectiveness of the margin CosReid network was verified on the mainstream datasets Market-1501 and DukeMTMC-reID compared with other state-of-the-art pedestrian re-identification methods.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献