WARM: Wearable AR and Tablet-Based Assistant Systems for Bus Maintenance

Author:

Borro DiegoORCID,Suescun Ángel,Brazález Alfonso,González José Manuel,Ortega Eloy,González Eduardo

Abstract

This paper shows two developed digital systems as an example of intelligent garage and maintenance that targets the applicability of augmented reality and wearable devices technologies to the maintenance of bus fleets. Both solutions are designed to improve the maintenance process based on verification of tasks checklist. The main contribution of the paper focuses on the implementation of the prototypes in the company’s facilities in an operational environment with real users and address the difficulties inherent in the transfer of a technology to a real work environment, such as a mechanical workshop. The experiments have been conducted in real operation thanks to the involvement of the public transport operator DBUS, which operates public transport buses in the city of Donostia—San Sebastian (Spain). Two solutions have been developed and compared against the traditional process: one based on Tablet and another one based on Microsoft HoloLens. The results show objective metrics (Key Performance Indicators, KPI) as well as subjective metrics based on questionnaires comparing the two technological approaches against the traditional one based on manual work and paper.

Funder

Horizon 2020 Framework Programme

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. An Evaluation of the Microsoft HoloLens for a Manufacturing-Guided Assembly Task;Hoover,2018

2. A survey of online monocular marker-less augmented reality;Teichrieb;Int. J. Modeling Simul. Pet. Ind.,2007

3. A computer algorithm for reconstructing a scene from two projections

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3