Rotordynamic Analysis of Gas Foil-Polymer Bearings Based on a Structural Elasticity Model of Polymer Layer along with Static-Load Deflection Tests

Author:

Park JisuORCID,Sim Kyuho

Abstract

In this study, rotordynamic analysis is performed using a simple structural model for the polymer layer of gas foil-polymer bearing (GFPB) composed of an accumulated bump foil and a polymer layer with high structural damping. The simple model that considers the elastic behavior of a cylinder-shaped polymer layer is introduced, and the structural stiffness of the layer is estimated based on Hooke’s law for differential elements in the layer. In addition, the simple model is coupled with the structural stiffness of the bump foil in consideration with a series relationship, which represents the structural model of GFPBs. A GFPB with thickness of 2 mm is fabricated, and the structural model is validated via static-load deflection tests for the GFPB. As a result of model validation, the proposed model is found to be effective in predicting the elastic behavior under the lightly loaded condition of GFPB. Next, the static performances of GFPBs, namely, gas-film pressure, thickness, and journal positions with respect to different polymer layer thickness, are analyzed to evaluate rotordynamic stability of GFPBs. The results indicate that high thickness yields an increase in damping and a decrease in cross-coupled effects. Specifically, in this study, 3 mm-thick polymer gives the best stability performance given the predicted effective damping results. As a result, this work provides a reasonable model for structural elasticity of GFPBs and lays a foundation for the widespread use of GFPBs.

Funder

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3