Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning

Author:

Galea Raul-Ronald,Diosan Laura,Andreica Anca,Popa Loredana,Manole Simona,Bálint Zoltán

Abstract

Despite the promising results obtained by deep learning methods in the field of medical image segmentation, lack of sufficient data always hinders performance to a certain degree. In this work, we explore the feasibility of applying deep learning methods on a pilot dataset. We present a simple and practical approach to perform segmentation in a 2D, slice-by-slice manner, based on region of interest (ROI) localization, applying an optimized training regime to improve segmentation performance from regions of interest. We start from two popular segmentation networks, the preferred model for medical segmentation, U-Net, and a general-purpose model, DeepLabV3+. Furthermore, we show that ensembling of these two fundamentally different architectures brings constant benefits by testing our approach on two different datasets, the publicly available ACDC challenge, and the imATFIB dataset from our in-house conducted clinical study. Results on the imATFIB dataset show that the proposed approach performs well with the provided training volumes, achieving an average Dice Similarity Coefficient of the whole heart of 89.89% on the validation set. Moreover, our algorithm achieved a mean Dice value of 91.87% on the ACDC validation, being comparable to the second best-performing approach on the challenge. Our approach provides an opportunity to serve as a building block of a computer-aided diagnostic system in a clinical setting.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3