Intelligent Cyber Attack Detection and Classification for Network-Based Intrusion Detection Systems

Author:

Oliveira NunoORCID,Praça IsabelORCID,Maia EvaORCID,Sousa OrlandoORCID

Abstract

With the latest advances in information and communication technologies, greater amounts of sensitive user and corporate information are shared continuously across the network, making it susceptible to an attack that can compromise data confidentiality, integrity, and availability. Intrusion Detection Systems (IDS) are important security mechanisms that can perform the timely detection of malicious events through the inspection of network traffic or host-based logs. Many machine learning techniques have proven to be successful at conducting anomaly detection throughout the years, but only a few considered the sequential nature of data. This work proposes a sequential approach and evaluates the performance of a Random Forest (RF), a Multi-Layer Perceptron (MLP), and a Long-Short Term Memory (LSTM) on the CIDDS-001 dataset. The resulting performance measures of this particular approach are compared with the ones obtained from a more traditional one, which only considers individual flow information, in order to determine which methodology best suits the concerned scenario. The experimental outcomes suggest that anomaly detection can be better addressed from a sequential perspective. The LSTM is a highly reliable model for acquiring sequential patterns in network traffic data, achieving an accuracy of 99.94% and an f1-score of 91.66%.

Funder

European Union Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid LSTM-Autoencoder Based Approach for Network Anomaly Detection System in IoT Environments;2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom);2024-07-08

2. A Survey on Network-based Intrusion Detection System using Learning Techniques;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

3. An improved DNN model for WLAN intrusion detection;The Computer Journal;2024-06-18

4. Reinforcing Network Security: Network Attack Detection Using Random Grove Blend in Weighted MLP Layers;Mathematics;2024-05-31

5. Cyber Attack Detection and Prediction System;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3