A Deeper Look at Sheet Music Composer Classification Using Self-Supervised Pretraining

Author:

Yang Daniel,Ji Kevin,Tsai TJORCID

Abstract

This article studies a composer style classification task based on raw sheet music images. While previous works on composer recognition have relied exclusively on supervised learning, we explore the use of self-supervised pretraining methods that have been recently developed for natural language processing. We first convert sheet music images to sequences of musical words, train a language model on a large set of unlabeled musical “sentences”, initialize a classifier with the pretrained language model weights, and then finetune the classifier on a small set of labeled data. We conduct extensive experiments on International Music Score Library Project (IMSLP) piano data using a range of modern language model architectures. We show that pretraining substantially improves classification performance and that Transformer-based architectures perform best. We also introduce two data augmentation strategies and present evidence that the model learns generalizable and semantically meaningful information.

Funder

Brian Butler HMC Faculty Enhancement Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composer classification using melodic combinatorial n-grams;Expert Systems with Applications;2024-09

2. Score Images as a Modality: Enhancing Symbolic Music Understanding through Large-Scale Multimodal Pre-Training;Sensors;2024-08-02

3. Multi-Instrument Based N-Grams for Composer Classification Task;Computación y Sistemas;2024-03-20

4. PBSCR: The Piano Bootleg Score Composer Recognition Dataset;Transactions of the International Society for Music Information Retrieval;2024

5. Design of Music Style Classification Teaching System based on BP Neural Network;2022 International Conference on Information System, Computing and Educational Technology (ICISCET);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3