Estimation of Aircraft-Dependent Bumpiness Severity in Turbulent Flight

Author:

Wang Haofeng,Gao ZhenxingORCID,Gu Hongbin,Qi Kai

Abstract

Atmospheric turbulence threatens flight safety of civil aviation aircraft by inducing aircraft bumpiness. A severity estimation method of aircraft bumpiness in turbulent flight is explored according to in-situ Eddy Dissipation Rate (EDR) indicator. With the turbulence intensity derived from EDR value, a time series of longitudinal and vertical turbulence was generated according to von Karman turbulence model. In order to obtain the vertical acceleration response of aircraft, the continuous change of aerodynamic force on the assembly of wing and horizontal tail was computed by Unsteady Vortex Lattice Method (UVLM). The computing accuracy was improved by using semi-circle division and assigning the vortex rings on the mean camber surface. Furthermore, the adverse effects of control surface deflections on bumpiness severity estimation can be effectively removed by separating turbulence-induced and aircraft maneuvers-induced aerodynamic force change. After that, the variance of vertical acceleration, as the severity indicator of aircraft bumpiness, was obtained by Welch spectrum estimation. With the refined grid level, the pitching moment change due to control surface deflections can be solved accurately by UVLM. The instantaneous acceleration change obtained by UVLM approximates recorded acceleration data with better accuracy than linear transfer function model. A further test with a set of flight data on the same airway shows that compared with in-situ EDR indicator, the proposed method gives an aircraft-dependent estimation of bumpiness severity, which can not only be used to estimate in-situ bumpiness but also be applied to forecast the bumpiness severity of other different aircrafts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3