Ambient Noise Measurements to Constrain the Geological Structure of the Güevéjar Landslide (S Spain)

Author:

Delgado JoséORCID,Galiana-Merino Juan JoséORCID,García-Tortosa Francisco J.,Garrido Jesús,Lenti Luca,Martino SalvatoreORCID,Peláez José A.ORCID,Rodríguez-Peces Martín J.,de Galdeano Carlos Sanz,Soler-Llorens Juan L.ORCID

Abstract

The reactivation of very large landslides may cause severe damage to society. Its prevention and management requires detailed information on the geometry and structure of these landslides, but the use of standard techniques (boreholes) may be prohibitive from an economic point of view. To overcome these difficulties, geophysical techniques are of special interest because they allow for studying very large areas at a reasonable cost. In this paper, we present a case study wherein the analysis of ambient noise allowed us to produce a model of a large landslide near Granada (southern Spain). The geometry and location of the failure zone, as well as the assessment of the state of involved materials, were estimated by combining two available boreholes and different geophysical techniques (downhole tests and the spectral analysis of ambient noise, horizontal to vertical spectral ratios (HVSR) and the frequency-wavenumber (f-k) methods). The results have allowed us to differentiate between values within the landslide mass with respect to those of stable materials, and to perform for the first time a comprehensive geological model of this unstable mass. Differences were also observed within the landslide mass (earth flow vs. slide zones), which are attributed to differences in the degree of alteration and the disturbance of the internal structure of materials constituting the landslide mass. These results show that techniques based on the measurement of ambient noise are of special interest for studying very large, highly remolded landslide masses.

Funder

Secretaría de Estado de Investigación, Desarrollo e Innovación of the Spanish government

Secretaría de Estado de Investigación, Desarrollo e Innovación

Junta de Andalucía

Universidad de Alicante

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3