Classification of Plant Electrophysiology Signals for Detection of Spider Mites Infestation in Tomatoes

Author:

Najdenovska Elena,Dutoit Fabien,Tran DanielORCID,Plummer Carrol,Wallbridge NigelORCID,Camps CédricORCID,Raileanu Laura Elena

Abstract

Herbivorous arthropods, such as spider mites, are one of the major causes of annual crop losses. They are usually hard to spot before a severe infestation takes place. When feeding, these insects cause external perturbation that triggers changes in the underlying physiological process of a plant, which are expressed by a generation of distinct variations of electrical potential. Therefore, plant electrophysiology data portray information of the plant state. Analyses involving machine learning techniques applied to plant electrical response triggered by spider mite infestation have not been previously reported. This study investigates plant electrophysiological signals recorded from 12 commercial tomatoes plants contaminated with spider mites and proposes a workflow based on Gradient Boosted Tree algorithm for an automated differentiation of the plant’s normal state from the stressed state caused by infestation. The classification model built using the signal samples recorded during daylight and employing a reduced feature subset performs with an accuracy of 80% in identifying the plant’s stressed state. Furthermore, the Hjorth complexity encloses the most relevant information for discrimination of the plant status. The obtained findings open novel access towards automated detection of insect infestation in greenhouse crops and, consequently, more optimal prevention and treatment approaches.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3