Job Shop Scheduling Problem Optimization by Means of Graph-Based Algorithm

Author:

Stastny JiriORCID,Skorpil VladislavORCID,Balogh ZoltanORCID,Klein Richard

Abstract

In this paper we introduce the draft of a new graph-based algorithm for optimization of scheduling problems. Our algorithm is based on the Generalized Lifelong Planning A* algorithm, which is usually used for path planning for mobile robots. It was tested on the Job Shop Scheduling Problem against a genetic algorithm’s classic implementation. The acquired results of these experiments were compared by each algorithm’s required time (to find the best solution) as well as makespan. The comparison of these results showed that the proposed algorithm exhibited a promising convergence rate toward an optimal solution. Job shop scheduling (or the job shop problem) is an optimization problem in informatics and operations research in which jobs are assigned to resources at particular times. The makespan is the total length of the schedule (when all jobs have finished processing). In most of the tested cases, our proposed algorithm managed to find a solution faster than the genetic algorithm; in five cases, the graph-based algorithm found a solution at the same time as the genetic algorithm. Our results also showed that the manner of priority calculation had a non-negligible impact on solutions, and that an appropriately chosen priority calculation could improve them.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Feature-based initial population generation for the optimization of job shop problems

2. Solving Job Shop Scheduling Problem Using Genetic Algorithm with Penalty Function;Sun;Int. J. Intell. Inf. Process.,2010

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3