Abstract
The continuous growth in population, urbanization, and industrial development has been increasing the generation of solid waste (SW) in the Kingdom of Saudi Arabia. Consequently, the associated greenhouse gas (GHG) emission is also following an increasing trend. The collection and use of greenhouse gases emitted from solid waste management practices are still limited. A causality analysis examined the driving factors of the emissions from solid waste management. The methane (CH4) emissions from municipal solid waste (MSW) increased with an increase in gross domestic product (GDP) per capita and urban population, and an increase in foreign direct investment (FDI) inflows and literacy rate was likely to reduce CH4 emissions from municipal solid waste and vice versa. The CH4 emission generated from industrial solid wastes was found to be positively related to GDP per capita, urban population, and FDI inflows. However, a decrease in the unemployment rate was likely to increase CH4 emissions from industrial solid wastes. The future greenhouse gas emissions were projected under different possible socio-economic conditions. The scenario analysis based on different variations of population and GDP growth revealed that methane emission from total waste would increase at an average annual rate of 5.13% between 2020 and 2050, and is projected to reach about 4000 Gg by the end of the year 2050. Although the Kingdom has been taking some initiatives towards climate change mitigation, it has significant opportunities to adopt some of the best practices in solid waste management including reduction, recycling, composting and waste-to-energy, and carbon capture and utilization. This study also put emphasis on developing appropriate policy approaches for climate change mitigation based on the circular economy which is gaining momentum in the Kingdom.
Funder
Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献