Portable Spectroscopy Calibration with Inexpensive and Simple Sampling Reference Alternatives for Dry Matter and Total Carotenoid Contents in Cassava Roots

Author:

Abincha Wilfred,Ikeogu Ugochukwu N.ORCID,Kawuki Robert,Egesi Chiedozie,Rabbi Ismail,Parkes Elizabeth,Kulakow Peter,Edema Richard,Gibson Paul,Owor Betty-Elizabeth

Abstract

The use of standard laboratory methods for trait evaluation is expensive and challenging, especially for low-resource breeding programs. For carotenoid assessment, rather than the standard HPLC method, these programs mostly rely on proxy approaches for quantitative total carotenoid content (TCC) assessment. To ensure data transferability and consistency, calibration models were developed using TCC iCheck and Chroma Meter proxy methods for the adoption of the alternative near-infrared phenotyping method in cassava. Calibration was developed for dry matter content (DMC) using a simple and inexpensive sampling procedure associated with the proxy TCC protocols. The partial least square (PLS) and random forest (RF) models were compared for the two traits, and the correlation (r) between the actual and predicted values in the training and validation (in bracket) sets of r = 0.85 (0.76) and r = 0.98 (0.82) with PLS and RF, respectively, for iCheck, and r = 0.99 (0.96) and r = 0.99 (0.96) with PLS and RF, respectively, for Chroma Meter, was obtained. The calibration result of r = 0.93 (0.83) and r = 0.99 (0.81) using PLS and RF, respectively, was obtained for DMC. This effort is valuable in carotenoids improvement and supports the ongoing effort in adopting portable spectrometers for rapid and cheap phenotyping in cassava.

Funder

Bill and Melinda Gates Foundation

UKAID

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3