Dynamic Cooperative Spectrum Sensing Based on Deep Multi-User Reinforcement Learning

Author:

Liu ShuaiORCID,He Jing,Wu Jiayun

Abstract

Dynamic spectrum access (DSA) has been considered as a promising technology to address spectrum scarcity and improve spectrum utilization. Normally, the channels are related to each other. Meanwhile, collisions will be inevitably caused by communicating between multiple PUs or multiple SUs in a real DSA environment. Considering these factors, the deep multi-user reinforcement learning (DMRL) is proposed by introducing the cooperative strategy into dueling deep Q network (DDQN). With no demand of prior information about the system dynamics, DDQN can efficiently learn the correlations between channels, and reduce the computational complexity in the large state space of the multi-user environment. To reduce the conflicts and further maximize the network utility, cooperative channel strategy is explored by utilizing the acknowledge (ACK) signals without exchanging spectrum information. In each time slot, each user selects a channel and transmits a packet with a certain probability. After sending, ACK signals are utilized to judge whether the transmission is successful or not. Compared with other popular models, the simulation results show that the proposed DMRL can achieve better performance on effectively enhancing spectrum utilization and reducing conflict rate in the dynamic cooperative spectrum sensing.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shaanxi Province Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3