Abstract
Continuous wheel condition monitoring is indispensable for the early detection of wheel defects. In this paper, we provide an approach based on cepstral analysis of axle-box accelerations (ABA). It is applied to the data in the spatial domain, which is why we introduce a new data representation called navewumber domain. In this domain, the wheel circumference and hence the wear of the wheel can be monitored. Furthermore, the amplitudes of peaks in the navewumber domain indicate the severity of possible wheel defects. We demonstrate our approach on simple synthetic data and real data gathered with an on-board multi-sensor system. The speed information obtained from fusing global navigation satellite system (GNSS) and inertial measurement unit (IMU) data is used to transform the data from time to space. The data acquisition was performed with a measurement train under normal operating conditions in the mainline railway network of Austria. We can show that our approach provides robust features that can be used for on-board wheel condition monitoring. Therefore, it enables further advances in the field of condition based and predictive maintenance of railway wheels.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献