Abstract
Any damaged condition is a rare occurrence for mechanical systems, as it is very unlikely to be observed. Thus, it represents an extreme deviation from the median of its probability distribution. It is, therefore, necessary to apply proper statistical solutions, i.e., Rare Event Modelling (REM). The classic tool for this aim is the Extreme Value Theory (EVT), which deals with uni- or multivariate scalar values. The Extreme Function Theory (EFT), on the other hand, is defined by enlarging the fundamental EVT concepts to whole functions. When combined with Gaussian Process Regression (GPR), the EFT is perfectly suited for mode shape-based outlier detection. In fact, it is possible to investigate the structure’s normal modes as a whole rather than focusing on their constituent data points, with quantifiable advantages. This provides a useful tool for Structural Health Monitoring, especially to reduce false alarms. This recently proposed methodology is here tested and validated both numerically and experimentally for different examples coming from Civil and Aerospace Engineering applications. One-dimensional beamlike elements with several boundary conditions are considered, as well as a two-dimensional plate-like spar and a frame structure.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献