Uncertainty Representation of Natural Frequency for Laminated Composite Cylindrical Shells Considering Probabilistic and Interval Variables

Author:

Chen Guohai,Wang Tong,Lu Congda,Yang Yuanshan,Li LinORCID,Yin Zichao,Peng XiangORCID

Abstract

Due to manufacturing errors, inaccurate measurement and working conditions changes, there are many uncertainties in laminated composite cylindrical shells, which causes the variation of vibration characteristics, and has an important influence on the overall performance. Therefore, an uncertainty representation methodology of natural frequency for laminated composite cylindrical shells is proposed, which considers probabilistic and interval variables simultaneously. The input interval variables are converted into a probabilistic density function or cumulative distribution function based on a four statistical moments method, and a unified probabilistic uncertainty analysis method is proposed to calculate the uncertainty of natural frequency. An adaptive Kriging surrogate model considering probabilistic uncertainty variables is established to accurately represent the natural frequency of laminated composite cylindrical shells. Finally, the dimensionless natural frequency of three-layer, five-layer and seven-layer laminated composite cylindrical shells with uncertainty input parameters is accurately represented. Compared with the Monte Carlo Simulation results, the mean error and standard deviation error are reduced to less than 0.07% and 4.7%, respectively, and the execution number of calculation function is significantly decreased, which fully proves the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3