Abstract
The latest developments in photovoltaic studies focus on the best use of the solar spectrum through Luminescent Solar Concentrators (LSC). Due to their structural characteristics, LSC panels allow considerable energy savings. This significant saving can also be of great interest in the remediation of contaminated sites, which nowadays requires green interventions characterized by high environmental sustainability. This study reported the evaluation of LSC panels in phytoremediation feasibility tests. Three plant species were used at a microcosm scale on soil contaminated by arsenic and lead. The experiments were conducted by comparing plants grown under LSC panels doped with Lumogen Red F305 (BASF) with plants grown under polycarbonate panels used for greenhouse construction. The results showed a higher production of biomass by the plants grown under the LSC panels. The uptake of the two contaminants by plants was the same in both the growing conditions, thus resulting in an increased total accumulation (defined as metal concentration times produced biomass) in plants grown under LSC panels, indicating an overall higher phytoextraction efficiency. This seems to confirm the potential that LSCs have to be building-integrated on greenhouse roofs, canopies, and shelters to produce electricity while increasing plants productivity, thus reducing environmental pollution, and increasing sustainability.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献