Mycoremediation of Soils Polluted with Trichloroethylene: First Evidence of Pleurotus Genus Effectiveness

Author:

Mayans BegoñaORCID,Camacho-Arévalo Raquel,García-Delgado CarlosORCID,Alcántara Cynthia,Nägele Norbert,Antón-Herrero RafaelORCID,Escolástico Consuelo,Eymar Enrique

Abstract

Trichloroethylene (TCE) is a proven carcinogenic chlorinated organic compound widely used as a solvent in industrial cleaning solutions; it is easily found in the soil, air, and water and is a hazardous environmental pollutant. Most studies have attempted to remove TCE from air and water using different anaerobic bacteria species. In addition, a few have used white-rot fungi, although there are hardly any in soil. The objective of the present work is to assess TCE removal efficiency using two species of the genus Pleurotus that have not been tested before: Pleurotus ostreatus and Pleurotus eryngii, growing on a sandy loam soil. These fungi presented different intra- and extracellular enzymatic systems (chytochrome P450 (CYP450), laccase, Mn peroxidase (MnP)) capable of aerobically degrading TCE to less harmful compounds. The potential toxicity of TCE to P. ostreatus and P. eryngii was firstly tested in a TCE-spiked liquid broth (70 mg L−1 and 140 mg L−1) for 14 days. Then, both fungi were assessed for their ability to degrade the pollutant in sandy loam soil spiked with 140 mg kg−1 of TCE. P. ostreatus and P. eryngii improved the natural dissipation of TCE from soil by 44%. Extracellular enzymes were poorly expressed, but mainly in the presence of the contaminant, in accordance with the hypothesis of the involvement of CYP450.

Funder

Kepler Ingeniería y Ecogestión SL

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3