Position Estimation and Compensation Based on a Two-Step Extended Sliding-Mode Observer for a MSFESS

Author:

Li ShushengORCID,Fu Yongling,Liu Ping

Abstract

This paper aims to deal with the problem of rotor position estimation and compensation for a magnetically suspended flywheel energy storage system under the consideration of measurement noise and unknown disturbances. First, the flywheel system working principle and description are analyzed and, based on this, the mathematical model as well as the coordinates transformation are introduced. For the purpose of the state estimation, a two-step extended sliding-mode observer is considered to obtain the estimates of the rotor angular position. In this control strategy, a traditional sliding-mode observer is adopted as a first-step original state estimator. After that, the relationship between the angular position and the estimation error is established and a second-step observer is designed to obtain the estimation of the error. The estimated error is then used to compensate the real values of the rotor angular position generated by the first-step observer. To reject the influences of the measurement noise and unknown disturbances, the H∞ optimization strategy is considered to determine the second-step observer structure. Finally, experimental results are presented to demonstrate the effectiveness of the proposed method. It is demonstrated that the proposed two-step observer method has a better estimation accuracy and control performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Review on advanced flywheel energy storage system with large scale;Dai;Trans. China Electrotech. Soc.,2011

2. Development of flywheel battery;Wang;Power Technol.,2014

3. Flywheel energy storage technology;Chen;Power Technol.,2016

4. Research on Integrated Application and Charging-discharging Control Method for the Magnetically Suspended Flywheel Storage-based UPS System;Li;Proc. CSEE,2017

5. Research on problem of the transient charging-discharging switching for the magnetically suspended flywheel-based PMSM system;Li;Small Spec. Electr. Mach.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3