A Spatial–Temporal Depth-Wise Residual Network for Crop Sub-Pixel Mapping from MODIS Images

Author:

Wang YuxianORCID,Fang YuanORCID,Zhong Wenlong,Zhuo Rongming,Peng Junhuan,Xu Linlin

Abstract

To address the problem caused by mixed pixels in MODIS images for high-resolution crop mapping, this paper presents a novel spatial–temporal deep learning-based approach for sub-pixel mapping (SPM) of different crop types within mixed pixels from MODIS images. High-resolution cropland data layer (CDL) data were used as ground references. The contributions of this paper are summarized as follows. First, we designed a novel spatial–temporal depth-wise residual network (ST-DRes) model that can simultaneously address both spatial and temporal data in MODIS images in efficient and effective manners for improving SPM accuracy. Second, we systematically compared different ST-DRes architecture variations with fine-tuned parameters for identifying and utilizing the best neural network architecture and hyperparameters. We also compared the proposed method with several classical SPM methods and state-of-the-art (SOTA) deep learning approaches. Third, we evaluated feature importance by comparing model performances with inputs of different satellite-derived metrics and different combinations of reflectance bands in MODIS. Last, we conducted spatial and temporal transfer experiments to evaluate model generalization abilities across different regions and years. Our experiments show that the ST-DRes outperforms the other classical SPM methods and SOTA backbone-based methods, particularly in fragmented categories, with the mean intersection over union (mIoU) of 0.8639 and overall accuracy (OA) of 0.8894 in Sherman County. Experiments in the datasets of transfer areas and transfer years also demonstrate better spatial–temporal generalization capabilities of the proposed method.

Funder

National Natural Science Foundation of China

Ministry of Natural Resources of the People’s Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3