A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites

Author:

Tchana Toffe Gilles,Oluwarotimi Ismail Sikiru,Montalvão DiogoORCID,Knight Jason,Ren GuogangORCID

Abstract

In the drive towards a sustainable bio-economy, a growing interest exists in the development of composite materials using renewable natural resources. This paper explores the life cycle assessment of processing of Flax fibre reinforced polylactic acid (PLA), with a comparison of glass fibre triaxial fabric in the production process. The use of hydrocarbon fossil resources and synthetic fibres, such as glass and carbon, have caused severe environmental impacts in their entire life cycles. Whereas, Flax/PLA is one of the cornerstones for the sustainable economic growth of natural fibre composites. In this study, the manufacturing processes for the production of Flax/PLA tape and triaxial glass fibre were evaluated through a gate-to-gate life cycle assessment (LCA). The assessment was based on an input-output model to estimate energy demand and environmental impacts. The quality of the natural hybrid composite produced and cost-effectiveness of their LCA was dependent on their roving processing speeds and temperature applied to both the Flax/PLA tape and triaxial glass fabrics during processing. The optimum processing condition was found to be at a maximum of 4 m/min at a constant temperature of 170 °C. In contrast, the optimum for normal triaxial glass fibre production was at a slower speed of 1 m/min using a roving glass fibre laminating machine. The results showed that when the Flax and PLA were combined to produce new composite material in the form of a flax/PLA tape, energy consumption was 0.25 MJ/kg, which is lower than the 0.8 MJ/kg used for glass fibre fabric process. Flax/PLA tape and glass fibre fabric composites have a carbon footprint equivalent to 0.036 kg CO2 and 0.11 kg CO2, respectively, under the same manufacturing conditions. These are within the technical requirements in the composites industry. The manufacturing process adopted to transform Flax/PLA into a similar tape composite was considerably quicker than that of woven glass fibre fabric for composite tape. This work elucidated the relationship of the energy consumptions of the two materials processes by using a standard LCA analytical methodology. The outcomes supported an alternative option for replacement of some conventional composite materials for the automotive industry. Most importantly, the natural fibre composite production is shown to result in an economic benefit and reduced environmental impact.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3