A Detailed Protocol for Constructing a Human Single-Chain Variable Fragment (scFv) Library and Downstream Screening via Phage Display

Author:

Liu Ziyi12,Kim Dokyun12ORCID,Kang Seokmin12,Jung Jae U.12

Affiliation:

1. Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

2. Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

Abstract

The development of monoclonal antibodies (mAbs) represents a significant milestone in both basic research and clinical applications due to their target specificity and versatility in therapeutic and diagnostic applications. The innovative strategy of mAb screening, utilizing phage display, facilitates the in vitro screening of antibodies with high affinity to target antigens. The single-chain variable fragment (scFv) is a subset of mAb derivatives, known for its high binding affinity and smaller size—just one-third of that of human IgG. This report outlines a detailed and comprehensive procedure for constructing a scFv phagemid library derived from human patients, followed by screening via phage display affinity selection. The protocol utilizes 348 primer combinations spanning the entire human antibody repertoire to minimize sequence bias and maintain library diversity during polymerase chain reaction (PCR) for scFv generation, resulting in a library size greater than 1 × 108. Furthermore, we describe a high-throughput phage display screening protocol using enzyme-linked immunosorbent assay (ELISA) to evaluate more than 1200 scFv candidates. The generation of a highly diverse scFv library, coupled with the implementation of a phage display screening methodology, is expected to provide a valuable resource for researchers in pursuit of scFvs with high affinity for target antigens, thus advancing both research and clinical endeavors.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3