A Computational Study of the Influence of Drag Models and Heat Transfer Correlations on the Simulations of Reactive Polydisperse Flows in Bubbling Fluidized Beds

Author:

Cruz Manuel Ernani1ORCID,Verissimo Gabriel Lisbôa1ORCID,Brandão Filipe Leite2ORCID,Leiroz Albino José Kalab1ORCID

Affiliation:

1. Department of Mechanical Engineering—Poli/COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68503, Rio de Janeiro 21941-972, RJ, Brazil

2. Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

In this work, the influence of gas–solid drag and heat transfer coefficient models on the prediction capacity of the Euler–Euler approach to simulate reactive bubbling fluidized bed flows is studied. Three different cases are considered, a non-reactive bidisperse bubbling fluidized bed flow (Case 1), and two reactive polydisperse flows in bubbling fluidized beds, one for biomass gasification (Case 2), and the other for biomass pyrolysis (Case 3). The Gidaspow, Syamlal–O’Brien, and BVK gas–solid drag models and the Gunn, Ranz–Marshall, and Li–Mason gas–solid heat transfer correlations are investigated. A Eulerian multiphase approach in a two-dimensional Cartesian domain is employed for the simulations. Computational results for the three cases are compared with experimental data from the literature. The results obtained here contribute to a better understanding of the impacts of such closure models on the prediction ability of the Euler–Euler approach to simulate reactive flows. The results indicate that, for the simulation of reactive flows in bubbling fluidized bed reactors, the kinetic modeling of the reactions has a global effect, which superposes with the influence of the drag and heat transfer coefficient models. Nevertheless, local parameters can be noticeably affected by the choice of the interface closure models. Finally, this work also identifies the models that lead to the best results for the cases analyzed here, and thus proposes the use of such selected models for gasification and pyrolysis processes occurring in bubbling fluidized bed reactors.

Funder

CNPq-Brazilian Council for Development of Science and Technology

ANP-Brazilian National Agency for Petroleum, Natural Gas and Biofuels through the Human Resources Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3