Impacts of Grading Rule on Urban Thermal Landscape Pattern Research

Author:

Zhang Wei,Chen FengORCID

Abstract

The thermodynamic landscape method is becoming a more popular approach for urban heat island research with the development of remote sensing technology. However, a limited amount of research discusses the theoretical and methodological issues of this method. This paper analyzed the reliability and stability of the results of thermal landscape pattern analysis with six different grading rules through surface temperature retrieval, landscape pattern analysis, and Geographic Information System (GIS) spatial analysis. The results demonstrate the following points. (1) The six grading methods can be categorized into two types: pixel number methods and temperature range methods. The grading results of the two kinds of methods lack comparability, whereas the grading results within one kind of method have high comparability. The temperature range methods have good consistency. The average value of the consistency indices (Si) of thermal landscape levels reaches up to 81.55%. The anomaly temperature method and standard deviation method are recommended for future research. (2) The grading rule significantly affects the stability of landscape indices, and its average variation coefficient reaches up to 22.36%. The authors suggest the use of landscape indices that have strong stability, such as shape index and landscape division index, in future research. (3) The results of the sensitivity analysis show that the change of the temperature range of thermal landscape levels affects landscape indices slightly, whereas the effect of the change of the level number of thermal landscapes on landscape indices is intense. The authors suggest categorizing the thermal landscape into six levels in future research in order to enhance the consistency and comparability among case studies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3