Equivalent Pore Channel Model for Fluid Flow in Rock Based on Microscale X-ray CT Imaging

Author:

Choi Chae-Soon,Lee Yong-Ki,Song Jae-Joon

Abstract

Pore-scale modeling with a reconstructed rock microstructure has become a dominant technique for fluid flow characterization in rock thanks to technological improvements in X-ray computed tomography (CT) imaging. A new method for the construction of a pore channel model from micro-CT image analysis is suggested to improve computational efficiency by simplifying a highly complex pore structure. Ternary segmentation was applied through matching a pore volume experimentally measured by mercury intrusion porosimetry with a CT image voxel volume to distinguish regions denoted as “apparent” and “indistinct” pores. The developed pore channel model, with distinct domains of different pore phases, captures the pore shape dependence of flow in two dimensions and a tortuous flow path in three dimensions. All factors determining these geometric characteristics were identified by CT image analysis. Computation of an interaction flow regime with apparent and indistinct pore domains was conducted using both the Stokes and Brinkman equations. The coupling was successfully simulated and evaluated against the experimental results of permeability derived from Darcy’s law. Reasonable agreement was found between the permeability derived from the pore channel model and that estimated experimentally. However, the model is still incapable of accurate flow modeling in very low-permeability rock. Direct numerical simulation in a computational domain with a complex pore space was also performed to compare its accuracy and efficiency with the pore channel model. Both schemes achieved reasonable results, but the pore channel model was more computationally efficient.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3