Electrokinetic Manipulation of Biological Cells towards Biotechnology Applications

Author:

Yan Songyuan1,Rajestari Zarya2ORCID,Morse Timothy Clifford2,Li Harbour2,Kulinsky Lawrence2ORCID

Affiliation:

1. Materials and Manufacturing Technology, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA

2. Mechanical and Aerospace Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA

Abstract

The presented study demonstrates the capability of the template-based electrokinetic assembly (TEA) and guidance to manipulate and capture individual biological cells within a microfluidic platform. Specifically, dielectrophoretic (DEP) focusing of K-562 cells towards lithographically-defined “wells” on the microelectrodes and positioning singles cells withing these “wells” was demonstrated. K-562 lymphoblast cells, are widely used in immunology research. The DEP guidance, particularly involving positive DEP (pDEP), enables the controlled guidance and positioning of conductive and dielectric particles, including biological cells, opening new directions for the accurate and efficient microassembly of biological entities, which is crucial for single cell analysis and other applications in biotechnology. The investigation explores the use of glassy carbon and gold as electrode materials. It was established previously that undiluted physiological buffer is unsuitable for inducing positive DEP (pDEP); therefore, the change of media into a lower ionic concentration is necessary. After pDEP was observed, the cells are resubmerged in the Iscove’s modified Dulbecco’s medium (IMEM), a cell culturing media, and incubated. A dead/alive staining assay was performed on the cells to determine their survival in the diluted buffer for the period required to capture them. The staining assay confirmed the cells’ survival after being immersed in the diluted biological buffer necessary for electrokinetic handling. The results indicate the promise of the proposed electrokinetic bio-sorting technology for applications in tissue engineering, lab-on-a-chip devices, and organ-on-a-chip models, as well as contributing to the advancement of single cell analysis.

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3