Chemical Instability-Induced Wettability Patterns on Superhydrophobic Surfaces

Author:

Chen Tianchen12,Chen Faze1ORCID

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China

2. Laboratory of Packaging Engineering and Visual Interaction Design, Tianjin University of Technology and Education, Tianjin 300222, China

Abstract

Chemical instability of liquid-repellent surfaces is one of the nontrivial hurdles that hinders their real-world applications. Although much effort has been made to prepare chemically durable liquid-repellent surfaces, little attention has been paid to exploit the instability for versatile use. Herein, we propose to create hydrophilic patterns on a superhydrophobic surface by taking advantage of its chemical instability induced by acid solution treatment. A superhydrophobic Cu(OH)2 nanoneedle-covered Cu plate that shows poor stability towards HCl solution (1.0 M) is taken as an example. The results show that 2.5 min of HCl solution exposure leads to the etching of Cu(OH)2 nanoneedles and the partial removal of the self-assembled fluoroalkyl silane molecular layer, resulting in the wettability transition from superhydrophobocity to hydrophilicity, and the water contact angle decreases from ~160° to ~30°. Hydrophilic dimples with different diameters are then created on the superhydrophobic surfaces by depositing HCl droplets with different volumes. Afterwards, the hydrophilic dimple-patterned superhydrophobic surfaces are used for water droplet manipulations, including controlled transfer, merging, and nanoliter droplet deposition. The results thereby verify the feasibility of creating wettability patterns on superhydrophobic surfaces by using their chemical instability towards corrosive solutions, which broadens the fabrication methods and applications of functional liquid-repellent surfaces.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3