A Novel Nondestructive Testing Probe Using AlN-Based Piezoelectric Micromachined Ultrasonic Transducers (PMUTs)

Author:

Yin Jiawei12,Zhou Zhixin12,Lou Liang12

Affiliation:

1. School of Microelectronics, Shanghai University, Shanghai 201800, China

2. The Shanghai Industrial µTechnology Research Institute, Shanghai 201899, China

Abstract

Ultrasonic nondestructive testing (NDT) usually utilizes conventional bulk piezoelectric transducers as transceivers. However, the complicated preparation and assembly process of bulk piezoelectric ceramics limits the development of NDT probes toward miniaturization and high frequency. In this paper, a 4.4 mm × 4.4 mm aluminum nitride (AlN) piezoelectric micromachined ultrasonic transducer (PMUT) array is designed, fabricated, characterized, and packaged for ultrasonic pulse–echo NDT of solids for the first time. The PMUT array is prepared based on the cavity silicon-on-insulator (CSOI) process and packaged using polyurethane (PU) material with acoustic properties similar to water. The fabricated PMUT array resonates at 2.183 MHz in air and at around 1.25 MHz after PU encapsulation. The bandwidth of the packaged PMUT receiver (244 kHz) is wider than that of a bulk piezoelectric transducer (179 kHz), which is good for axis resolution improvement. In this work, a hybrid ultrasonic NDT probe is designed using two packaged PMUT receivers and one 1.25 MHz bulk transmitter. The bulk transmitter radiates an ultrasonic wave into the sample, and the defect echo is received by two PMUT receivers. The 2D position of the defect could be figured out by time-of-flight (TOF) difference, and a 30 mm × 65 mm detection area is acquired. This work demonstrates the feasibility of applying AlN PMUTs to ultrasonic NDT of solids and paves the way toward a miniaturized NDT probe using AlN PMUT technology.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3