Delamination of Plasticized Devices in Dynamic Service Environments

Author:

Tian Wenchao1,Chen Xuyang2,Zhang Guoguang3,Chen Yuanming4,Luo Jijun3

Affiliation:

1. Key Laboratory of Electronic Equipment Structure Design (MOE), School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China

2. Guangzhou Research Institute, Xidian University, Guangzhou 510000, China

3. Foshan Blue Rocket Electronics Co., Ltd., Foshan 528000, China

4. Sharetek Industrial Equipment Co., Ltd., Shanghai 201109, China

Abstract

With the continuous development of advanced packaging technology in heterogeneous semiconductor integration, the delamination failure problem in a dynamic service environment has gradually become a key factor limiting the reliability of packaging devices. In this paper, the delamination failure mechanism of polymer-based packaging devices is clarified by summarizing the relevant literature and the latest research solutions are proposed. The results show that, at the microscopic scale, thermal stress and moisture damage are still the two main mechanisms of two-phase interface failure of encapsulation devices. Additionally, the application of emerging technologies such as RDL structure modification and self-healing polymers can significantly improve the thermal stress state of encapsulation devices and enhance their moisture resistance, which can improve the anti-delamination reliability of polymer-based encapsulation devices. In addition, this paper provides theoretical support for subsequent research and optimization of polymer-based packages by summarizing the microscopic failure mechanism of delamination at the two-phase interface and introducing the latest solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3