A Broadband Transmitarray Antenna Using a Metasurface-Based Element for Millimeter-Wave Applications

Author:

Cao Yue12,Zhang Miaojuan1,Fan Chong3,Chen Jian-Xin1

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. Guangdong Provincial Key Laboratory of Millimeter-Wave and Terahertz, School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

3. Nanjing Electronic Devices Institute, Nanjing 210016, China

Abstract

In this manuscript, a broadband transmitarray antenna (TA) using a metasurface-based element is presented for millimeter-wave communication applications. The metasurface-based TA element adopts a receiver–transmitter configuration: metasurfaces are applied as the receiver and transmitter, and slot-coupled differentially fed striplines are used as the phase compensation. The designed TA element achieves good transmission performance with a more than 360° transmission phase shift range and less than 1-dB transmission insertion loss within a wide frequency range. To verify the proposed TA, a prototype is fabricated based on the conventional printed circuit board (PCB) process, and a pyramid horn is designed as the source. The measured results show that the proposed TA with the differential feed network presents a 1-dB gain bandwidth of 26.2% from 23.5 to 30.5 GHz and a peak gain of 24.5 dBi. The designed TA is a promising alternative for millimeter-wave communications applications because of its high gain, broad bandwidth, low costs, and convenient integration with other circuits.

Funder

National Natural Science Foundation of China

Open Research Project of Guangdong Provincial Key Laboratory of Millimeter-Wave and Terahertz

Natural Science Foundation of Jiangsu Province

Nantong Basic Science Research Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3