Microfabricating Mirror-like Surface Precision Micro-Sized Amorphous Alloy Structures Using Jet-ECM Process

Author:

Han Lei1,Ming Pingmei1ORCID,Niu Shen1,Yang Guangbin1,Li Dongdong1,Cheng Kuaile1

Affiliation:

1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

Amorphous alloy (AA) is a high-performance metal material generally with significantly excellent mechanical and corrosion resistance properties and thus is considered as a desirable material selection for micro-scale articles. However, the microfabrication of AA still faces a variety of technical challenges mainly because the materials are too hard to process and easily lose their original properties, although at moderately high temperatures. In this study, jet-electrolyte electrochemical machining (Jet-ECM) was proposed to microfabricate the Zr-based AA because it is a low-temperature material-removal process based on the anode dissolution mechanism. The electrochemical dissolution characteristics and material removal mechanism of AA were investigated, and then the optimal process parameters were achieved based on the evaluation of the surface morphologies, surface roughness, geometrical profile, and machining accuracy of the machined micro-dimples. Finally, the feasibility was further studied by using Jet-ECM to fabricate arrayed micro-dimples using the optimized parameters. It was found that Jet-ECM can successfully microfabricate mirror-like surface AA arrayed precision micro-dimples with significantly high dimensional accuracy and geometrical consistency. Jet-ECM is a promisingly advantageous microfabrication process for the hard-to-machine AA.

Funder

Scientific and Technological Innovation Leaders in Central Plains of Henan Province

China Postdoctoral Science Foundation

Key Research and Development and Promotion Program in Henan Province

The Fundamental Research Funds for the Universities of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3