Analysis and Verification of Heat Dissipation Structures Embedded in Substrates in Power Chips Based on Square Frustums Thermal through Silicon Vias

Author:

Guo Fengjie1,Ma Kui123ORCID,Ran Jingyang1,Yang Fashun123

Affiliation:

1. Department of Electronics, Guizhou University, Guiyang 550025, China

2. Reliability Engineering Research Center of Semiconductor Power Devices of Ministry of Education, Guiyang 550025, China

3. Guizhou Provincial Key Lab of Micro-Nano-Electronics and Software Technology, Guiyang 550025, China

Abstract

A novel heat dissipation structure composed of square frustums thermal through silicon via array and embedded in P-type (100) silicon substrate is proposed to improve the heat dissipation capacity of power chips while reducing process difficulty. Based on theoretical analysis, the heat transfer model and thermo-electric coupling reliability model of a power chip with the proposed heat dissipation structure are established. A comparative study of simulation indicates that the proposed heat dissipation structure, which can avoid problems such as softness, poor rigidity, fragility and easy fracture caused by thinning chips has better heat dissipation capability than thinning the substrate of power chips.

Funder

National Natural Science Foundation of China

Guizhou University Talent Research Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3